Suponga que se tiene tres cargas puntuales localizadas en los vértices de un triángulo recto, como se muestra en la figura, donde q1 = -80
Las direcciones de las fuerzas sabemos coinciden con las líneas que unen a cada par de cargas puntuales. La fuerza que q1 ejerce sobre q3, F31, es de atracción. La fuerza que q2 ejerce sobre q3, F32, es de repulsión. Así, las fuerzas F31 y F32 tienen las direcciones que se indican. La separación entre q3 y q1 se obtiene de (CB)2 = (AC)2 + (AB)2 = (0.3 m)2 + (0.4 m)2, de donde CB = 0.5 m.
Las magnitudes de tales fuerzas son:
F31 = [(9x109 Nm2 /C2)(80x10-6 C)(70x10-6 C)]/ (0.5 m)2
= 201.6 N
= 201.6 N
F32 = [(9x109 Nm2 /C2)(5 0x10-6 C)(70x10-6 C)]/ (0.3 m)2
= 350 N
= 350 N
Conviene disponer ejes coordenados xy tal como se indica en la figura, con el origen en la carga donde deseamos calcular la fuerza resultante, en este caso en q3.
Llamando F3 a la fuerza resultante sobre q3, entonces F3
= F31 + F32 . Luego, en términos de componentes x e y :
= F31 + F32 . Luego, en términos de componentes x e y :
F3x = F31x + F32x
F3y = F31y + F32y
F31x = F31cos = (201.6 N)x(40/50) = 161.3 N ; F31y
= - F31sen = -201.6x30/50 = -121 N
F32x = 0 ; F32y = F32 = 350 N
F3x = 161.3 N + 0 = 161.3 N ; F3y = -121 N + 350 N = 229 N
F3y = F31y + F32y
F31x = F31cos
= - F31sen
F32x = 0 ; F32y = F32 = 350 N
F3x = 161.3 N + 0 = 161.3 N ; F3y = -121 N + 350 N = 229 N
La magnitud de la fuerza neta F3 se obtiene de (F3)2
= (F3x)2 + (F3y>)2, resultando F3 = 280 N. El ángulo de esta fuerza se obtiene de tg = F3y/ F3x= 229/161.3
= 1.42 ==> = 54.8º.
= (F3x)2 + (F3y>)2, resultando F3 = 280 N. El ángulo de esta fuerza se obtiene de tg
= 1.42 ==>
Para mas ejercicios selecciona algunos de los enlaces en la parte superior derecha.
No hay comentarios:
Publicar un comentario